Quebrada Pastor Water Distribution System

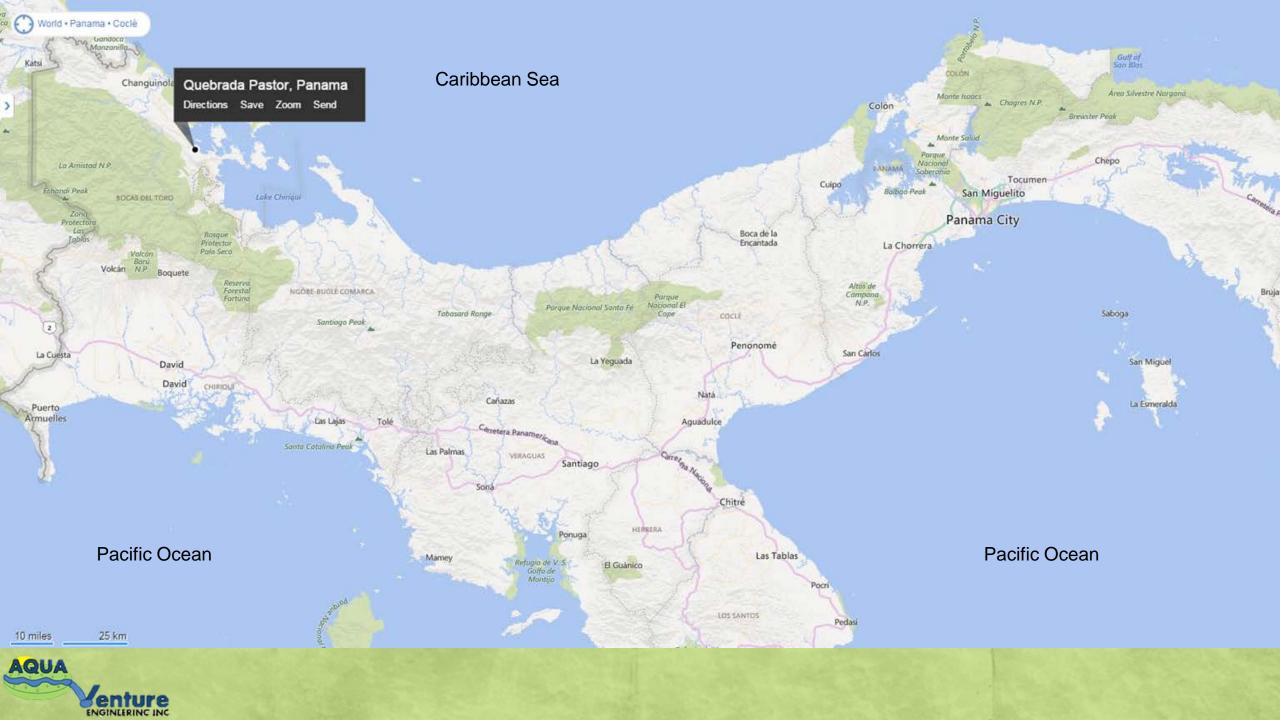
International Senior Design – Summer 2015

December 18, 2015

AquaVenture Engineering Inc. Derek Benoy, Colleen Carbary, Angelena Crispo (PM), Maggie Ziols

Outline

- iDesign Program
- Quebrada Pastor Background
- Cultural Understanding
- Design Projects
- Conclusion
- Questions



International Senior Design

- 2 Semester, 6 credits
- 2 Weeks in Panama
 - 7 days in villages
- Design solutions to problems in the village
 - Analyzed water distribution system
- Work with Peace Corps Volunteers
- Have community support

Quebrada Pastor

- Approximately 800 people & 100 homes
- 2 Churches
- K-10 School
- Small Businesses
- Community Income
 - Fincas

ENGINLERINC INC

- Cash crops- yucca, cacao, bananas, etc
- Tourism outside the community
- Bocas Island
- Domestic Services

Host Family

PCV: Alex

- Thinks like an Engineer
 - Senior Design: Analyze the Aqueduct
- Sustainable Development = Empowerment
- Did leave halfway through
- Continued to communicate with during fall semester

Background of Aqueduct

- Senior Design: Analyze the Aqueduct
- Originally built in 2002 by parents of school students and residential users
 - Funded by the government
 - Two Tomas (Spring Box)
 - Three 1,000-gallon storage tanks
- Built to service 8-10 connections including the school
- Currently serves 30 homes, as well as school, church, and Heidy Organic Chocolates
- Directiva controls it

Directiva: Water Committee

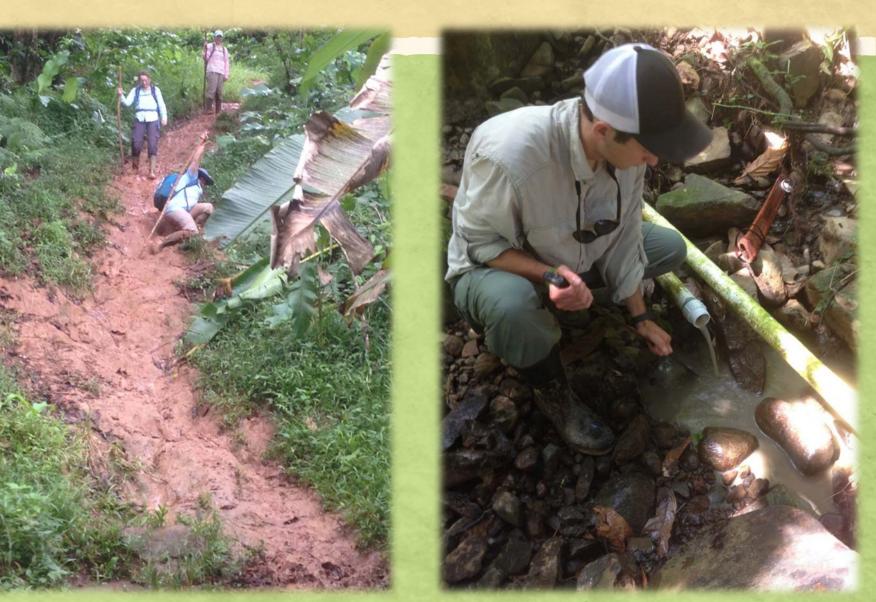
- High functioning committee
 - 6 Executive Board positions
- All users pay \$3/month
 - School does not pay
 - Line will be cut after 2 months of delinquent payments
- Operator maintains the line
 - \$20/month salary

Community Support

- Very hands on
- Villagers with us every day
- Showed the line location
- Cleared the brush as needed
- Helped with surveying
- Very hospitable
- Receptive to our questions

Interviewing the Villagers

- Tried to talk to as many people as possible
 - Users from each branch of system
 - Each member of the directiva
 - System Operator
 - Principal of the school
 - Women who cook & work at the school
- Questions:
 - Demand
 - Uses
- Cultural understanding



Gathering Data Wasn't Easy

- Were not fluent in Spanish
- Unfamiliar equipment
- Field Survey
- Flow Measurements
- Water Quality
- Interviews

Environmental and Societal Constraints

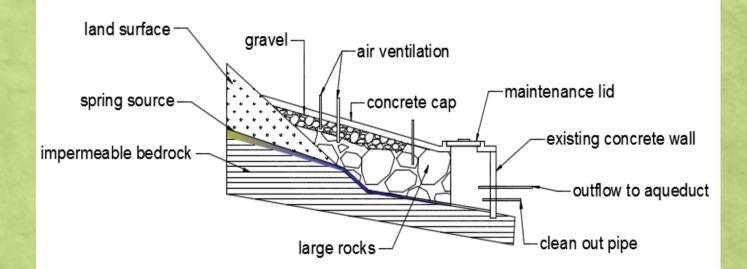
- Villagers would be doing work
 - Not particularly skilled
 - Very proud of their previous improvements to system
- Terrain is hilly and muddy
- Have to carry all the supplies a mile up to reach improvement areas
- Will need to shut off the line during construction

Tomas: Spring Sources

- Two Tomas feed entire aqueduct system
- First was built by the
 - Panamanian government
- Second was constructed by the community

Toma 2

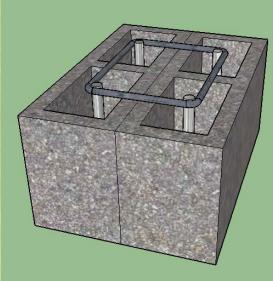
Toma 2

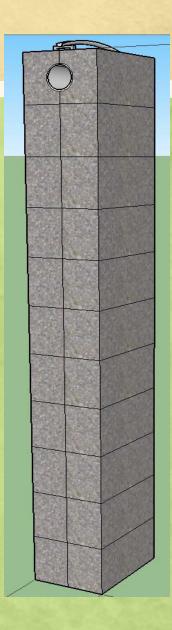

- Lacks proper sealing
- Sediment build up = turbid water
- Rapid coliform counts
 - Toma 1 Average: 12
 - Toma 2 Average: 44
- Design improvements will enhance quality and increase flow

Toma 2 Design Improvement

- Low-profile toma design
- Remove original lid
- Use existing concrete walls
- Rock and gravel fill
- Seal off with concrete cap
- Concrete lid for maintenance

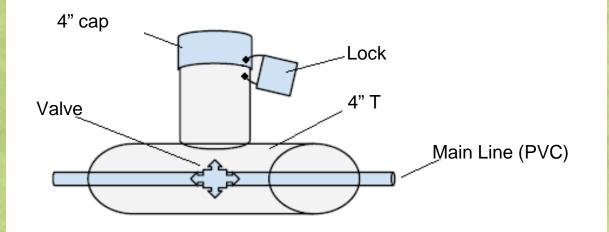
Stream Crossing Supports


- 2 Crossings
- Ist in worst shape
- New support design



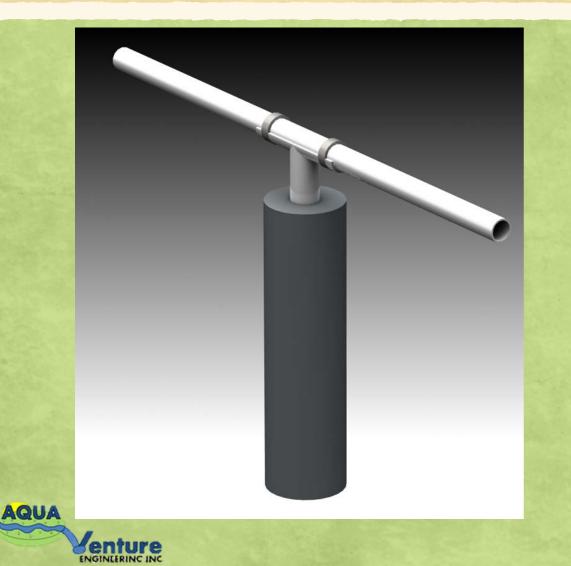
Stream Crossing Design Improvement

- 6" Masonry Blocks
- #5 rebar running vertically
- #3 rebar stirrups
- 2 blocks wide
- II blocks tall
- Placed in a 30"x16"x12" concrete footing
- Allowable Axial Load: 6,800 lbs


Control Valves

- 5 currently
- Add more valves
 - Before and after storage tanks
 - Service Lines shutoffs

Control Valve Design Improvement


- 13 new valves
- One on each service line
- Valve protection

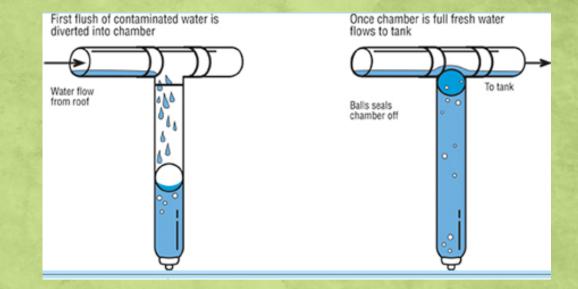
Elevation Changes

Ascent Improvements

- 200m ascent
- 30 degree incline
- 4 equally spaced
- 2 inch T-connection
- Pipe clamps
- Paint for UV protection

Rainwater Catchment Supplements

School owns two 1,500-gallon rain catchment tanks


- Not in service due to misuse
- Demand: 1,000 gallons water/day
- Average monthly rainfall: 209mm
- 46-year Rainfall Data used to determine potential supply and reliability of rain catchment system
- Analysis suggests that an average of 48% of water demands could be met each month

Rainwater Catchment Recommendations

- Fencing with a lock to protect tanks
- Additional gutter to increase supply
- Screen to prevent debris from entering gutters
- First-flush system to increase water quality
- Recommend that school rely more on rain catchment than on the aqueduct

EPANET Modeling

EPANET Graphs

Pattern Editor								x
Pattern ID	Descri	ption						
Time Period	1	2	3	4	5	6	7	8
Multiplier	.5	.5	.5	.5	1	1.5	1.5	1
I < □								P.
	4 5 6		10 11 12 Fime Period			19 20 21	22 23 24	•
Load	Save		0	<	Canc		<u>H</u> elp	

Node ID	Elevation (m)	Demand (LPM)	Head (m)	Pressure (m)
Junc 14	38.17	0.19	128.9	90.73
Junc 15	58.1	0.19	128.88	70.78
Junc 16	71.79	0.19	128.77	56.98
Junc 17	68.72	0.19	128.71	59.99

Nodes at 6:00 hours

Construction Cost

Improvement	Cost	
Rainwater Catchment	\$193	
Low Profile Spring Box	\$71	
Pipe Crossings	\$653	
System Control	\$243	
Total (rounded)	\$1,300	

AQUA

ENGINEERINC INC

Potential Sources of Funding: •All families with children attending school

Aqueduct users

Fundraisers

Government

Construction Schedule

Improvement	Duration (Days)	
Water Supply and Quality	18	
Toma 2	16	
Rainwater Catchment System	2	
System Control	11	
Installing Ball Valves	11	
Lifespan Improvements	30	
Stream Crossing 1	13	
Quebrada Pastor Crossing	6	
Quebrada Pastor Ascent	11	

- 59 days total
- 2 Person Crew
- 5 Hours a day
- January and February

Conclusion

- Surveyed 14,000 ft of pipe servicing 30 houses, a school, church and small business
- Focused on improving
 - Water Supply and Quality
 - System Control
 - Lifespan Improvements
- PCV had meeting with village on Dec 15th
- Loved experiencing Quebrada Pastor

